Simeon Furrer, Dirk Dahlhaus
ISIT 2005
Let A be a normal matrix with eigenvalues λ1, λ2,..., λn, and let G{cyrillic} denote the smallest disc containing these eigenvalues. We give some inequalities relating the center and radius of G{cyrillic} to the entries in A. When applied to Hermitian matrices our results give lower bounds on the spread maxij(λi - λj) of A. When applied to positive definite Hermitian matrices they give lower bounds on the Kantorovich ratio maxij(λi - λj)/(λi + λj). © 1994.
Simeon Furrer, Dirk Dahlhaus
ISIT 2005
Laxmi Parida, Pier F. Palamara, et al.
BMC Bioinformatics
Vladimir Yanovski, Israel A. Wagner, et al.
Ann. Math. Artif. Intell.
Fernando Martinez, Juntao Chen, et al.
AAAI 2025