Zelek S. Herman, Robert F. Kirchner, et al.
Inorganic Chemistry
Electric field driven transport of DNA through solid-state nanopores is the key process in nanopore-based DNA sequencing that promises dramatic reduction of genome sequencing costs. A major hurdle in the development of this sequencing method is that DNA transport through the nanopores occurs too quickly for the DNA sequence to be detected. By means of all-atom molecular dynamics simulations, we demonstrate that the velocity of DNA transport through a nanopore can be controlled by the charge state of the nanopore surface. In particular, we show that the charge density of the nanopore surface controls the magnitude and/or direction of the electro-osmotic flow through the nanopore and thereby can significantly reduce or even reverse the effective electrophoretic force on DNA. Our work suggests a physical mechanism to control DNA transport in a nanopore by chemical, electrical or electrochemical modification of the nanopore surface. © 2010 IOP Publishing Ltd.
Zelek S. Herman, Robert F. Kirchner, et al.
Inorganic Chemistry
Surendra B. Anantharaman, Joachim Kohlbrecher, et al.
MRS Fall Meeting 2020
Q.R. Huang, Ho-Cheol Kim, et al.
Macromolecules
T. Schneider, E. Stoll
Physical Review B