Rajiv Ramaswami, Kumar N. Sivarajan
IEEE/ACM Transactions on Networking
We study multi-structural games, played on two sets A and B of structures. These games generalize Ehrenfeucht-Fraïssé games. Whereas Ehrenfeucht-Fraïssé games capture the quantifier rank of a first-order sentence, multi-structural games capture the number of quantifiers, in the sense that Spoiler wins the r-round game if and only if there is a first-order sentence ϕ with at most r quantifiers, where every structure in A satisfies ϕ and no structure in B satisfies ϕ. We use these games to give a complete characterization of the number of quantifiers required to distinguish linear orders of different sizes and we develop machinery for analyzing structures beyond linear orders.
Rajiv Ramaswami, Kumar N. Sivarajan
IEEE/ACM Transactions on Networking
Ronald Fagin, Ravi Kumar, et al.
SIAM Journal on Discrete Mathematics
Bowen Zhou, Bing Xiang, et al.
SSST 2008
Raghu Krishnapuram, Krishna Kummamuru
IFSA 2003