Nandana Mihindukulasooriya, Sarthak Dash, et al.
ISWC 2023
We develop the mathematical formulation for teaching generative models to a learner whose learning processes and cognitive behaviors may be analytically intractable, but can be simulated by numerical processes. The model considers the learner's bias (prior knowledge) or memory process by using stochastic models. We also present an optimization framework for solving the involved non-convex, stochastic optimization problems associated with machine teaching. The algorithm design and the conditions and analysis are discussed for local convergence properties of the proposed optimization algorithms. In the paper, we discuss a number of example cases to illustrate the algorithmic ideas and demonstrate their efficiency.
Nandana Mihindukulasooriya, Sarthak Dash, et al.
ISWC 2023
Radu Marinescu, Debarun Bhattacharjya, et al.
EMNLP 2025
Maya Anderson, Guy Amit, et al.
ICISSP 2025
Kristjan Greenewald, Yuancheng Yu, et al.
NeurIPS 2024